
A Denotational Engineering

of Programming Languages
…

Part 11: Lingua-2V Transformational programming

(Section 8.6 of the book)

Andrzej Jacek Blikle

June 9th, 2021

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 2

Enriching the

functionality of programs

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 3

Installing an appliance on an engine

pre x,k is nnint :

x := 0;

while x+1 ≤ k

do x := x+1 od

post x = k

Step 1: A trivial search engine

(linear search)

Step 2: a slow program

pre x,n is nnint :

x := 0;

asr x,n is nnint

while (x+1)2 ≤ n

do x := x+1 od

rsa

post x = isrt(n)

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n is nnint

If we wish to speed up

our program, we have to

change the engine

A

pre x,n is nnint :

x := 0;

while x+1 ≤ isrt(n)

do x := x+1 od

post x = isrt(n)

Step 2: A trivial program

installing

an applience

Def: isrt(n)2 ≤ n < (isrt(n)+1)2

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 4

The derivation of Dahl's integer square root (1)
(deriving a logarithmic search engine)

The magnitude of k: If 2m ≤ k < 2m+1 then mag.k = 2m e.g. mag.11 = 8

Def: po2.k iff (∃m≥0) k=2m : k is a power of 2

Q1: pre x,k,z is nnint :

z := 1;

asr x,k,z is nnint and po2.z :

while z ≤ k do z:=2*z od

rsa

post x,k,z is nnint and z = 2*mag.k

searches for 2*mag.k e.g. 2*mag.11 = 16

rząd wielkości

A

Q2: pre x,k,z is nnint and z = 2*mag.k :

x := 0;

while z > 1

do

z := z/2;

if x+z ≤ k then x:=x+z fi

od

post x = k and z = 1

k = 11

2*mag.11 = 16

11 = 1*8 + 0*4 + 1*2 + 1*1

combine these programs

sequentially

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 5

The derivation of Dahl's integer square root (2)
(with a logarithmic search engine)

Q3: pre x,k,z is nnint : a "pure" search engine

z := 1;

x := 0;

asr x,k,z is nnint and po2.z :

while z ≤ k do z:=2*z od

while z > 1

do

z := z/2;

if x+z ≤ k then x:=x+z fi

od

rsa

post x = k and z = 1

Replace k by isrt(n) and use

z ≤ isrt(n) ≡ z2 ≤ n whenever z,n is nnint

x+z ≤ isrt(n) ≡ (x+z)2 ≤ n whenever z,n,x is nnint

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 6

The derivation of Dahl's integer square root (3)
(with a logarithmic search engine)

pre z,x,n is nnint:

z := 1;

x := 0

asr z,x,n is nnint and po2.z :

while z2 ≤ n do z:=2*z od

while z > 1

do

z := z/2;

if (x+z)2 ≤ n then x:=x+z fi

od

rsa

post x = isrt(n) and z = 1

Q4:

First introduce new variable q with q=z2 to avoid the recalculation of z2

We shall optimize this program by restricting the number of executions of

arithmetic operations (time).

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 7

The derivation of Dahl's integer square root (4)
(with a logarithmic search engine)

pre z,x,n,q is nnint:

z := 1;

x := 0;

q := 1;

asr z,x,n is nnint and po2.z and q=z2

while q ≤ n do off z:=2*z; q:=4*q on od

while z > 1

do

off z:=z/2; q:=q/4 on

if x2+2*x*z+q ≤ n then x:=x+z fi

od

rsa

post x=isrt(n) and z=1 and q=z2

Q5:

z>1 ≡ q>1 whenever (z>0 and q=z2)

new variables y and p with y=n-x2 and p=x*z

x2 + 2*x*z + q ≤ n ≡ 2*p+q ≤ y whenever (y=n-x2 and p=x*z)

register identifier

identyfikator rejestrowy

register expression

wyrażenie rejestrowe

register condition

warunek rejestrowy

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 8

The derivation of Dahl's integer square root (5)
(with a logarithmic search engine)

pre z,x,n,q,y,p is nnint:

z := 1; x := 0; q := 1;

asr z,x,n is nnint and q=z2 :

while q ≤ n do off z:=2*z; q:=4*q on od

y:= n;

p:= 0;

asr y=n-x2 and p=x*z :

while q > 1

do

off z:=z/2; q:=q/4; p:=p/2; on

if 2*p+q ≤ y then x:=x+z; p:=p+q; y:=y-2p-q fi

od

rsa

rsa

post x = isrt(n) and z = 1 and q=z2 and p=x*z and y=n-x2

Q6: The introduction of y and p is an

invention to be justified later.

q=z2  isrt(q)=z whenever z is nnint

Then we replace z by isrt(q) in

order to eliminate z in the next step.

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 9

The derivation of Dahl's integer square root (6)
(with a logarithmic search engine)

pre z,x,n,q,y,p is nnint:

z := 1; x := 0; q := 1;

asr z,x,n is nnint and isrt(q)=z :

while q ≤ n do off z:=2*isrt(q); q:=4*q on od

y:= n;

p:= 0;

asr y=n-x2 and p=x*isrt(q) :

while q > 1

do

off z:=isrt(q)/2; q:=q/4; p:=p/2 on

if 2*p+q ≤ y

then x:=x+isrt(q); p:=p+q; y:=y-2p-q

fi

od

rsa

rsa

post x=isrt(n) and z=1 and q=1 and p=x and y=n-x2

Q7:

since z=1

z can be removed because it

doesn't contribute to other

variables and we do not need

its terminal value.

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 10

The derivation of Dahl's integer square root (9)
(with a logarithmic search engine)

pre x,n,q,y,p is nnint:

x := 0; q := 1;

asr x,n is nnint:

while q ≤ n do q:=4*q od

y:= n;

p:= 0;

asr y=n-x2 and p=x*isrt(q) :

while q > 1

do

off q:=q/4; p:=p/2 on

if 2*p+q ≤ y

then p:=p+q; y:=y-2p-q

fi

od

rsa

rsa

post x=isrt(n) and q=1 and p=x and y=n-x2

Q8:

x=isrt(n) ≡ p=isrt(n) whenever p=x

after this transformation x becomes unnecessary

we also remove assertions which we will not need
A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 11

The derivation of Dahl's integer square root (10)
(with a logarithmic search engine)

pre n,q,y,p is nnint:

q := 1;

while q ≤ n do q:=4*q od

y:= n;

p:= 0;

while q > 1

do

q:=q/4;

p:=p/2; if 2*p+q ≤ y then p:=p+q; y:=y-2p-q fi

od

post p=isrt(n) and q=1

Q9:

A

replace by
if p+q ≤ y then p:=p/2+q; y:=y-p-q else p:=p/2 fi

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 12

The derivation of Dahl's integer square root (11)
(with a logarithmic search engine)

pre n,q,y,p is nnint:

q := 1;

while q ≤ n do q:=4*q od

y:= n;

p:= 0;

while q > 1

do

q:=q/4;

if p+q ≤ y

then p:=p+q; y:=y-p-q

else p:=p/2

fi

od

post p=isrt(n)

Q10:

This is the Ole Dahl's program.

Did he developed it in a similar way?
A

All arithmetic operations are easilly

implementable in binary arithmetic.

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 13

Adding a

register identifier

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 14

The idea of a method of register indentifiers

ide-r=dae-r ─ register condition

ide-r ─ register identifier

dae-r ─ register expression

pre prc

ins-h; (head)

asr con rsa ;

asr con:

ins

rsa

ins-t (tail)

post poc

P: pre prc

ins-h ;

ide-r := dae-r ;

asr con and ide-r=dae-r :

$(ins, ide-r=dae-r)

rsa

ins-t

post poc

Q:

syntactic metaoperator

making Q correct

Inserting ide-r with ide-r=dae-r into P

Assumptions:

ide-r is not in P

pre con: ide-r:=dae-r post TT
ide-r:=dae-r

will be executed

without error or looping

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 15

An inductive definition of $

If ide not in dae-r then

$(ide:=dae, ide-r=dae-r) = ide:=dae

If ide is in dae-r then

$(ide:=ade, ide-r=dae-r) =

(1) = off ide:=ade; ide-r:=dae-r on

(2) (reverse order) = off ide-r:=(ide:=dae)@dae-r; ide:=ade on

E.g. transformation from (1) into (2) in the context of asr q=z2 rsa

asr q=z2 rsa; off z:=2*z ; q:=z2 on ≡

the elimination of z from q:=z2

asr q=z2 rsa; off q:=(z:=2*z)@z2; z:=2*z on ≡

asr q=z2 rsa; off q:=4z2; z:=2*z on ≡

asr q=z2 rsa; off q:=4q; z:=2*z on

= the equality of

syntactic objects

≡ the equality of

denotations

Let ins be ide:=dae Let Sde.[sin @ dae] = Ssi.[sin] ● Sde.[dae]

arbitrary

data expression

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 16

An inductive definition of $ (con.)

Imperative-procedure call

If none of actual reference parameters is in dae-r then

$(call ide (ref apa-r val apa-v), ide-r=dae-r) =

= call ide (ref apa-r val apa-v)

If thre is a reference parameter in dae-r then

$(call ide (ref apa-r val apa-v), ide-r=dae-r) =

= off call ide (ref apa-r val apa-v); ide-r:=dae-r on

$((ide-1 ; ide-2), ide-r=dae-r) =

$(ide-1, ide-r=dae-r) ; $(ide-2, ide-r=dae-r)

$(if dae-b then ins-1 else ins-2 fi, ide-r=dae-r) =

if dae-b

then $(ins-1, ide-r=dae-r)

else $(ins-2, ide-r=dae-r)

fi For while analogously.

Structured instructions

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 17

$ versus @

@ is a symbol from the syntax of Lingua

Sde.[ins @ dae] = Sin.[ins] ● Sde.[dae]

$ a syntactic constructor

$: Instruction x RegisterCondition ⟼ Instruction where

RegisterCondition = Identifier = DatExp

a character

of the syntax of Lingua

an equality of languages

a character

of the syntax of MetaSoft

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 18

Invariants versus assertions

A strong invariant (in proofs of total correctness)

con  ins @ con i.e.

{con} ⊆ Sin.[ins] ● {con}

A weak invaiant (in proofs of partial correctness)

{con} ● Sin.[ins] ⊆ {con}

A loop invariant (in proofs of total correctness of while)

there exists a condition inv such that:

pre inv and dae: sin post inv

pre inv while dae do sin od post TT

prc  inv

inv and (not dae)  poc

pre prc:

while dae do sin od

post poc

To be an invariant is a

property of condition

relativized to an

instruction.

Assertions
asr con rsa

are specinstructions.

A

June 9, 2021 19A.Blikle - Denotational Engineering; part 11 (19)

Thank you for

your attention

