A Denotational Engineering
of Programming Languages

Part 11: Lingua-2V Transformational programming
(Section 8.6 of the book)

Andrzej Jacek Blikle
June 9t 2021

Enriching the
functionality of programs

Installing an appliance on an engine

Step 1: A trivial search engine Def: isrt(n)? < n < (isrt(n)+1)2
(linear search)

Step 2: Atrivial program

pre x,k is nnint : pre x,n is nnint
x := 0; x := 0;
while x+1 < k installing while x+1 < isrt(n)
do x := x+1 od an applience do x := x+1 od
post x = Kk post x = isrt(n)
x+1 £ isrt(n) £ (x+1)? £ n whenever x,n is nnint

Step 2: a slow program

pre x,n is nnint
x = 0y
asr x,n is nnint
while (x+1)¢ < n

do x := x+1 od If we wish to speed up
rsa our program, we have to
post x = 1isrt(n) change the engine

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (1)

deriving a logarithmic search engine
rzad wielkosci (J J gine)

The magnitude of k: If 2™ < k < 2™ then mag.k = 2™ e.g. mag.11 =8

Def: po2.k iff (3m=0) k=2™: kis a power of 2

Ql.pre x,k,z is nnint : searches for 2*mag.k e.g. 2*mag.11 = 16
z = 1;
asr x,k,z is nnint and po2.z
while z £ k do z:=2*z od

rsa
post x,k,z is nnint and z = 2*mag.k :
combine these programs
Q2:pre x,k,z is nnint and z = 2*mag.k : sequentially
X = 0;
while z > 1 k=11
do 2*mag.11 = 16
z = 2/2;
if xt+z < k then x:=x+z £i WL =18+0+1%2+17
od
/\post x =k and z = 1
June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (2)

(with a logarithmic search engine)

Q3. pre x,k,z is nnint : a "pure" search engine
z = 1;
x := 0;

asr x,k,z is nnint and po2.z
while z £ k do z:=2*z od
while z > 1

do
7z 1= 2z2/2;
if x+z < k then x:=x+z fi
od
rsa

post x = k and z = 1

Replace k by isrt (n) and use
z < isrt(n) = z2< n whenever z,n is nnint

x+z £ isrt(n) = (x+z)? £ n whenever z,n,x is nnint

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (3)

(with a logarithmic search engine)

Q4: pre z,x,n is nnint:
z = 1;
x:= 0
asr z,x,n is nnint and po2.z
while z? < n do z:=2*z od
while z > 1

do
z 1= 2/2;
if (x+z)? £ n then x:=x+z fi
od
rsa
post x = isrt(n) and z = 1

We shall optimize this program by restricting the number of executions of
arithmetic operations (time).

First introduce new variable g with g=z? to avoid the recalculation of z~

June 9, 2021 A A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (4)

(with a logarithmic search engine)

register identifier

Q5: pre z,x,n,q is nnint: identyfikator rejestrowy
z :=1;
£ S" / register expression
q:=1;
2 wyrazenie rejestrowe

asr z,x,n is nnint and poZ.z and g=z

while g < n do off z:=2*z; g:=4*gl\on od
while z > 1

do register condition

off z:=2/2; g:=g/4 on
if x?+2*x*z+g £ n then x:=x+z fi
od
rsa
post x=isrt(n) and z=1 and g=z?

warunek rejestrowy

z>1 = g>1 whenever (z>0 and g=z?)
new variables y and p with y=n-x? and p=x*z
x? + 2*x*z + g £ n = 2*p+g £ y whenever (y=n-x? and p=x*z)

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (5)

(with a logarithmic search engine)

Q6: pre z,x,n,q,y,p is nnint: The introduction of y and p is an
z:=1; x:=0; g:=1; invention to be justified later.
asr z,x,n is nnint and g=z’ : <

<«

while g < n do off z:=2*z; g:=4*g on od

y:= 8; g=z? < 1isrt(g)=z whenever z is nnint
p:= 0;
asr y=n-x°’ and p=x*z : Then we replace z by isrt (g) In

while g > 1

order to eliminate z in the next step.
do

off z:=2/2; g:=q9/4; p:=p/2; on
if 2*p+g £ vy then x:=x+z; p:=p+qg; y:=y-2p-qg fi
od
rsa
rsa

post x = isrt(n) and z = 1 and g=z° and p=x*z and y=n-x?

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (6)

(with a logarithmic search engine)

Q7. pre z,x,n,q,y,p is nnint:
z:=1;, x:=0; g:=1;
asr z,x,n is nnint and isrt (g)=z
while g < n do off z:=2*isrt(q); g:=4*q on od
Vi= n;

pi= 0; z can be removed because it
asr y=n-x? and p=x*isrt(q) : doe;n't contribute to other
while q > 1 yarlablgs and we do not need
do its terminal value.

off z:=isrt(qgq)/2; gq:=q/4; p:=p/2 on
if 2*p+g £ vy
then x:=x+isrt(q); p:=ptqg; y:=y—-2p—-g
fi
od
rsa
rsa

post x=isrt(n) and z=1 and g=1 and p=x and y=n-x?

A since z=1

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

The derivation of Dahl's integer square root (9)

Q8. pre x,n,q,y,p

(with a logarithmic search engine)

is nnint:

x:=0; g:=1;
asr x,n is nnint:
while g < n do g:=4*g od

Vi= n;
p:= 0;

asr y=n-x? and p=x*isrt(q)

while g >
do

off g:=

1

q/4; p:=p/2 on

if 2%piq < v
then p:=ptg; y:=y-2p-qg

fi
od
rsa
rsa
post x=isrt (n)

A

June 9, 2021

x=1srt(n) = p=isrt(n)

whenever p=x

after this transformation x becomes unnecessary

and g=1 and p=x and y=n-x?

we also remove assertions which we will not need

A.Blikle - Denotational Engineering; part 11 (19)

10

The derivation of Dahl's integer square root (10)

(with a logarithmic search engine)

Q9: pre n,q,y,p is nnint:

q:=1;

while g < n do g:=4*g od

y:i= n;

p:= 0;

while g > 1

do

q:=g9/4;
p:=p/2; if 2*p+g £ v then p:=p+qg; yv:=y-2p-q fi
od
post p=isrt(n) and g=1 I

replace by
if p+g £ yv then p:=p/2+qg; y:=y-p-g else p:=p/2 fi

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

11

The derivation of Dahl's integer square root (11)

(with a logarithmic search engine)

Q10: pre n,q,y,p 1is nnint:
q:=1;
while g < n do q:=4*q od
y:= nj;
o= All arithmetic operations are easilly

chliile q>1 implementable in binary arithmetic.
(o]

q:=q/4;
if ptg < vy
then p:=p+qg; y:=y-p-g
else p:=p/2
fi
od
post p=isrt (n)

This is the Ole Dahl's program.

Did he developed it in a similar way?

A

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

Adding a
register identifier

The idea of a method of register indentifiers

Inserting ide-r with ide-r=dae-r IntoP

P: pre prc Q: pre prc
ins-h; (head) ins-h ;
asr con rsa ; » ide-r := dae-r ;
asr con: asr con and ide-r=dae-r
ins $(ins, ide-r=dae-r)
rsa rsa
ins-t (tail) ins-t syntactic metaoperator
post poc post poc making Q correct

Assumptions:
ide-r isnotinP

pre con: 1de-r:=dae-r post TT ide-r:=dae-r

\ will be executed
without error or looping

ide-r=dae-r — register condition
ide-r — register identifier
dae-r — register expression

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19) 14

An inductive definition of $
Let ins be ide:=dae Let Sde.[sin @ dae] = Ssi.[sin] @ Sde.[dae]

If ide not in dae-r then
$(ide:=dae, ide-r=dae-r)

If ide is In dae-r then
$(ide:=ade, ide-r=dae-r)

ide:=dae

(1) = off ide:=ade; ide-r:=dae-r on

arbitrary
data expression

= the equality of
syntactic objects

(2) (reverse order) = off ide-r:=(ide:=dae)@dae-r; ide:=ade on

E.g. transformation from (1) into (2) in the context of asr g=z° rsa

asr g=z? rsa; off z:=2*z g:=z? on =
the elimination of z from q:=z2
asr g=z° rsa; off g:=(z:=2*z)Q@z?; z:=2*z on =

asr g=z’ rsa; off g:=4z?

asr g=z°’ rsa; off g:=4q;

A

.
14

z:=2%7 on

z:=2%7 on

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

= the equality of
denotations

An inductive definition of $ (con.)
Imperative-procedure call

If none of actual reference parametersisin dae-r then

$(call ide (ref apa-r val apa-v), ide-r=dae-r) =
= call ide (ref apa-r val apa-v)

If thre is a reference parameter in dae—-r then

$(call ide (ref apa-r val apa-v), ide-r=dae-r) =
= off call ide (ref apa-r val apa-v); ide-r:=dae-r on

Structured instructions

$((ide-1 ; ide-2), ide-r=dae-r)=
$(ide-1, ide-r=dae-r) ; $(ide-2, ide-r=dae-r)

$(if dae-b then ins-1 else ins-2 fi, ide-r=dae-r)=
if dae-b
then $(ins-1, ide-r=dae-r)
else $(ins-2, ide-r=dae-r)
A £i For while analogously.

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

16

$ versus @

@ is a symbol from the syntax of Lingua
Sde.[ins @ dae]=Sin.[ins] e Sde.[dae]

$ a syntactic constructor
$: Instruction x RegisterCondition — Instruction where

RegisterCondition = Identifier = DatExp

A

June 9, 2021

a character
of the syntax of Lingua

an equality of languages
a character
of the syntax of MetaSoft

A.Blikle - Denotational Engineering; part 11 (19)

17

Invariants versus assertions

A strong invariant (in proofs of total correctness)

con ® 1ns

@ con I.e.

{con} € Sin.[ins] e {con}

A weak invaiant (in proofs of partial correctness)

{con} e Sin.[ins] € {con}

A loop invariant (in proofs of total correctness of while)

there exists a condition inv such that:

pre inv and dae: sin post inv

pre inv while dae do sin od post TT
prc ® inv

inv and

(not dae) = poc

pre prc:

while dae do sin od

post poc

A

June 9, 2021

A.Blikle - Denotational Engineering; part 11 (19)

To be an invariant is a
property of condition
relativized to an
instruction.

Assertions
asXty Con rsa

are specinstructions.

18

June 9, 2021 A.Blikle - Denotational Engineering; part 11 (19)

